Fandom

Open Science Wiki

Solar System/Planets

181pages on
this wiki
Add New Page
Comment1 Share
Solar system1

This image shows the Sun and all the Eight planets of the Solar System.

There are currently eight planets in our solar system according to IAU(International Astronomical Union). All  can be seen with a small telescope; or binoculars. And large observatories continue to provide much useful information. But the possibility of getting up close with interplanetary spacecraft has revolutionized planetary science.

Below is the list and Description of All the planets with their respective images. The images have been obtained from an external source which is stated at the foot of the page.

Mercury

Planet Mercury

Mercury is the closest planet to the Sun and the eighth largest. Mercury is slightly smaller in diameter than the moons Ganymede and Titan but more than twice as massive.

Mythology and History

In Roman mythology Mercury is the god of commerce, travel and thievery, the Roman counterpart of the Greek god Hermes, the messenger of the Gods. The planet probably received this name because it moves so quickly across the sky. Mercury has been known since at least the time of the Sumerians (3rd millennium BC). It was sometimes given separate names for its apparitions as a morning star and as an evening star. Greek astronomers knew, however, that the two names referred to the same body. Heraclitus even believed that Mercury and Venus orbit the Sun, not the Earth.

Space Missions

Mercury has been now been visited by two spacecraft, Mariner 10 and MESSENGER. Mariner 10 flew by three times in 1974 and 1975. Only 45% of the surface was mapped (and, unfortunately, it is too close to the Sun to be safely imaged by HST). MESSENGER was launched by NASA in 2004 and has been in orbit Mercury since 2011. Its first flyby in Jan 2008 provided new high quality images of some of the terrain not seen by Mariner 10. Since then Messenger has taken over 250,000 photographs coving the entire planet. Global Mosaics.

Geography and Geology

Mercury is in many ways similar to the Moon: its surface is heavily cratered and very old; it has no plate tectonics. On the other hand, Mercury is much denser than the Moon (5.43 gm/cm3 vs 3.34). Mercury is the second densest major body in the solar system, after Earth. Actually Earth's density is due in part to gravitational compression; if not for this, Mercury would be denser than Earth. This indicates that Mercury's dense iron core is relatively larger than Earth's, probably comprising the majority of the planet. Mercury therefore has only a relatively thin silicate mantle and crust.

Mercury's interior is dominated by a large iron core whose radius is 1800 to 1900 km. The silicate outer shell (analogous to Earth's mantle and crust) is only 500 to 600 km thick. At least some of the core is probably molten. Measurements from the Messenger spacecraft show Mercury’s magnetic field is approximately three times stronger in the northern hemisphere than the southern hemisphere and has led to breakthrough research. Modeling by Hao Cao, a UCLA postdoctoral scholar working in the lab of Christopher Russell after considering many factors, including how fast Mercury rotates and the chemistry and complex motion of fluid inside the planet show the magnetic field of Mercury works differently than it does on Earth.

Venus

Planet Venus

Venus is the second planet from the Sun and the sixth largest. Venus' orbit is the most nearly circular of that of any planet, with an eccentricity of less than 1%.

orbit: 108,200,000 km (0.72 AU) from Sun

Diameter: 12,103.6 km

Mass: 4.869e24 kg

Since Venus is an inferior planet, it shows phases when viewed with a telescope from the perspective of Earth. Galileo's observation of this phenomenon was important evidence in favor of Copernicus's heliocentric theory of the solar system.

Mythology and History

Venus is the goddess of love and beauty. The planet is so named probably because it is the brightest of the planets known to the ancients. (With a few exceptions, the surface features on Venus are named for female figures.)

Venus has been known since prehistoric times. It is the brightest object in the sky except for the Sun and the Moon. Like Mercury, it was popularly thought to be two separate bodies: Eosphorus as the morning star and Hesperus as the evening star, but the Greek astronomers knew better. (Venus's apparition as the morning star is also sometimes called Lucifer.)

Space Missions

The first spacecraft to visit Venus was Mariner 2 in 1962. It was subsequently visited by many others (more than 20 in all so far), includingPioneer Venus and the Soviet Venera 7 the first spacecraft to land on another planet, and Venera 9 which returned the first photographs of the surface. The first orbiter, the US spacecraft Magellan produced detailed maps of Venus' surface using radar. ESA's Venus Express is now in orbit with a large variety of instruments.

Characteristics

Venus' rotation is somewhat unusual in that it is both very slow (243 Earth days per Venus day, slightly longer than Venus' year) andretrograde. In addition, the periods of Venus' rotation and of its orbit are synchronized such that it always presents the same face toward Earth when the two planets are at their closest approach. Whether this is a resonance effect or merely a coincidence is not known.

Venus is sometimes regarded as Earth's sister planet. In some ways they are very similar:

  • Venus is only slightly smaller than Earth (95% of Earth's diameter, 80% of Earth's mass).
  • Both have few craters indicating relatively young surfaces.
  • Their densities and chemical compositions are similar.

Because of these similarities, it was thought that below its dense clouds Venus might be very Earthlike and might even have life. But, unfortunately, more detailed study of Venus reveals that in many important ways it is radically different from Earth. It may be the least hospitable place for life in the solar system.


The pressure of Venus' atmosphere at the surface is 90 atmospheres (about the same as the pressure at a depth of 1 km in Earth's oceans). It is composed mostly of carbon dioxide. There are several layers of clouds many kilometers thick composed of sulfuric acid. These clouds completely obscure our view of the surface. This dense atmosphere produces a run-away greenhouse effect that raises Venus' surface temperature by about 400 degrees to over 740 K (hot enough to melt lead). Venus' surface is actually hotter than Mercury's despite being nearly twice as far from the Sun.

There are strong (350 kph) winds at the cloud tops but winds at the surface are very slow, no more than a few kilometers per hour.

Venus probably once had large amounts of water like Earth but it all boiled away. Venus is now quite dry. Earth would have suffered the same fate had it been just a little closer to the Sun. We may learn a lot about Earth by learning why the basically similar Venus turned out so differently.

Most of Venus' surface consists of gently rolling plains with little relief. There are also several broad depressions: Atalanta PlanitiaGuinevere PlanitiaLavinia Planitia. There two large highland areas: Ishtar Terra in the northern hemisphere (about the size of Australia) and Aphrodite Terra along the equator (about the size of South America). The interior of Ishtar consists mainly of a high plateau, Lakshmi Planum, which is surrounded by the highest mountains on Venus including the enormous Maxwell Montes.

Data from Magellan's imaging radar shows that much of the surface of Venus is covered by lava flows. There are several large shield volcanoes (similar to Hawaii or Olympus Mons) such as Sif Mons. Recently announced findings indicate that Venus is still volcanically active, but only in a few hot spots; for the most part it has been geologically rather quiet for the past few hundred million years.

Amazing Fact

Venus has no magnetic field, perhaps because of its slow rotation.


Earth

Earth is the third planet from the Sun and the fifth largest in the solar system.

orbit:    149,600,000 km (1.00 AU) from Sun
diameter: 12,756.3 km
mass:     5.972e24 kg

Etymology, Mythology and History

Earth is the only planet whose English name does not derive from Greek/Roman mythology. The name derives from Old English and Germanic. There are, of course, hundreds of other names for the planet in other languages. In Roman Mythology, the goddess of the Earth was Tellus - the fertile soil (Greek: Gaia, terra mater - Mother Earth).

Earth, of course, can be studied without the aid of spacecraft. Nevertheless it was not until the twentieth century that we had maps of the entire planet. Pictures of the planet taken from space are of considerable importance; for example, they are an enormous help in weather prediction and especially in tracking and predicting hurricanes. And they are extraordinarily beautiful.

The Earth is divided into several layers which have distinct chemical and seismic properties (depths in km): 

	     0-  40  Crust
	    40- 400  Upper mantle
	   400- 650  Transition region
	   650-2700  Lower mantle
	  2700-2890  D'' layer
      	  2890-5150  Outer core
      	  5150-6378  Inner core       

The crust varies considerably in thickness, it is thinner under the oceans, thicker under the continents. The inner core and crust are solid; the outer core and mantle layers are plastic or semi-fluid. The various layers are separated by discontinuities which are evident in seismic data; the best known of these is the Mohorovicic discontinuity between the crust and upper mantle.

Most of the mass of the Earth is in the mantle, most of the rest in the core; the part we inhabit is a tiny fraction of the whole (values below x10^24 kilograms):

	     atmosphere     = 0.0000051
	     oceans         = 0.0014
	     crust          = 0.026
	     mantle         = 4.043
	     outer core     = 1.835
	     inner core     = 0.09675

The core is probably composed mostly of iron (or nickel/iron) though it is possible that some lighter elements may be present, too. Temperatures at the center of the core may be as high as 7500 K, hotter than the surface of the Sun. The lower mantle is probably mostly silicon, magnesium and oxygen with some iron, calcium and aluminum. The upper mantle is mostly olivene and pyroxene (iron/magnesium silicates), calcium and aluminum. We know most of this only from seismic techniques; samples from the upper mantle arrive at the surface as lava from volcanoes but the majority of the Earth is inaccessible. The crust is primarily quartz (silicon dioxide) and other silicates like feldspar. Taken as a whole, the Earth's chemical composition (by mass) is:

 34.6%  Iron
 29.5%  Oxygen
15.2%  Silicon
12.7%  Magnesium
 2.4%  Nickel
 1.9%  Sulfur
 0.05% Titanium

The Earth is the densest major body in the solar system.

References

  • nineplanets.org
  • wikipedia.org
  • planets.org

External Link

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random Wiki